Circles

Circle

- A circle is a closed, curved line on which every point on the circle is equally distant from a fixed point within, called the center. A plane figure bound by such a line.

Circle

- A circle is a type of line.
- Imagine a straight line segment that is bent around until its ends join.
- Then arrange that loop until it is exactly circular - that is, all points along that line are the same distance from a center point.

Properties of a Circle

- Center. The center is a point inside the circle.
- All points on the circle are equidistant (same distance) from the center point.

Properties of a Circle

- Radius. The radius is the distance from the center to any point on the circle.
- It is half the diameter.
$-r=1 / 2 D$

Properties of a Circle

- Diameter. Diameter is the distance across the circle; the length of any chord passing through the center.
- It is twice the radius.
- $D=2 r$

Properties of a Circle

- Circumference. The circumference is the distance around the circle.

Properties of a Circle

- Pi (π). In any circle, if you divide the circumference (distance around the circle) by it's diameter (distance across the circle), you always get the same number.
Circumference \div Diameter $=\pi$
- This number is called $\mathrm{Pi}(\pi)$ and is approximately 3.142 .
$\mathrm{C} \div \mathrm{D}=\boldsymbol{\pi}$

Properties of a Circle

- Circumference. The circumference is the distance around the circle.
- The formula to calculate the circumference of a circle is:
- $\mathrm{C}=2 \pi r$

Properties of a Circle

- Area. The area of a circle is the space of the region enclosed by the circle.
- The formula to calculate the area of a circle is:
$-\mathrm{A}=\pi \mathrm{r}^{2}$
- $\mathrm{A}=3.142 \times$ (radius x radius)

Properties of a Circle

- Area is the amount or extent of surface, especially the measure in square units of a two-dimensional (plane) figure of limited extent.
- Even though a circle is round, we still calculate area in "square units."

$$
A=\pi r^{2}
$$

Area of a Circle

- $A=\pi r^{2}$

Properties of a Circle

- Chord. A chord is a line segment linking any two points on a circle.

Properties of a Circle

- Tangent. A tangent is a line passing (the outside of) a circle and touching it at just one point.

Properties of a Circle

- Secant. A secant is a line that intersects a circle at two points.

Area of a Circle

- The formula to calculate the area of a circle is:
πr^{2}
$3.14 \times$ (radius \times radius)

Semicircle

- A semicircle is a half circle, formed by cutting a whole circle along a diameter line, as shown above.
- Any diameter of a circle cuts it into two equal semicircles.
- Since a semicircle is one-half of a circle, the formula to calculate the area of a semicircle is:
$1 / 2 \pi r^{2}$
$1 / 2 \times 3.14 \times$ (radius \times radius)

Major and Minor Arcs

- Given two points on a circle:
- The minor arc is the shortest arc linking them.
- The major arc is the longest.

Circle Formulas

- Magic Number: pi, $\pi, 3.142$
$-\pi=C / D$
- $C=\pi D \quad$ or $\quad C=2 \pi r$
- $R=1 / 2 C / \pi$
- Area
- Circle: $\quad \mathrm{A}=\pi r^{2}$ - or $-\mathrm{A}=\pi(1 / 2 D)^{2}$
- Semi-circle: $A=1 / 2 \pi r^{2}$
- Circumference
- $C=2 \pi r \quad$ or $\quad C=\pi D$

Find the Radius of an Arc
-1. Draw a chord across the arc:
-2. Measure:
-3. Calculate:

Find the Radius of an Arc
-1. Draw a chord across the arc:

Find the Radius of an Arc

-2. Measure:

- The height of the arch above the chord:
- The width of the chord:

Find the Radius of an Arc

- Calculate:
- Formula:

Radius $=\frac{H}{2}+\frac{W^{2}}{8 \times H}$

