CORE CURRICULUM

Session 1: Whole Numbers and Fractions

Session One Objectives

When trainees have completed this session, they should be able to do the following:

1. Identify whole numbers and demonstrate how to work with them mathematically.
a. Identify different whole numbers and their place values.
b. Demonstrate the ability to add and subtract whole numbers.
c. Demonstrate the ability to multiply and divide whole numbers.
2. Explain how to work with fractions.
a. Define equivalent fractions and show how to find lowest common denominators.
b. Describe improper fractions and demonstrate how to change an improper fraction to a mixed number.
c. Demonstrate the ability to add and subtract fractions.
d. Demonstrate the ability to multiply and divide fractions.

Sections 1.1.0 and 1.1.1 - Place Values

Understanding place value is essential to speaking numbers correctly and accurately.

Sections 1.1.0 and 1.1.1 - Place Values

4. A supervisor estimates that a commercial building will require sixteen thousand, five hundred feet of copper piping to complete all of the restroom facilities. How would you write this value as a whole number?
a. 1,650
b. 16,500
c. 160,500
d. $16,000,500$

Section 1.2.0 - Addition

ADDITION

Step 1 Align numbers vertically.
Step 2 Begin with the column to the right and work towards the left.
Step 3 Carry the 1 over to the next column for numbers over 10. Note that this number may be larger than 1 when adding more than two numbers.
Step 4 Complete the final column on the left.

$$
\begin{array}{r}
123 \\
+\quad 84 \\
\hline 807
\end{array}
$$

Section 1.2.0 -Subtraction

SUBTRACTION

Step 1 Align numbers vertically.
Step 2 Begin with the column to the right and work towards the left. Borrow a 1 from the next column when the number on the bottom is larger than the one above. Reduce the value of that column by 1 to compensate.
Step 3 Complete the final columns.

$$
\begin{array}{r}
12,{ }_{6}^{7} 66 \\
-1,483 \\
\hline 11,283
\end{array}
$$

Section 1.2.1 - Addition and Subtraction

1. In calculating a bid for a roof restoration, a contractor estimates that he will need $\$ 847$ for lumber, $\$ 456$ for roofing shingles, and $\$ 169$ for hardware. What is the total cost for the materials portion of the bid?

$$
\$ 1,472.00
$$

Section 1.2.1 - Addition and Subtraction

4. A general contractor ordered three different sized windows to complete a job on a residential home. She ordered a bow window that cost $\$ 874$; one 36 " $\times 36$ " double-hung window that cost \$67; and one 36" $\times 54$ " double-hung window that cost $\$ 93$. If she had set aside $\$ 1,250$ to purchase the windows in her estimate, how much will she have left after buying them?
$\$ 216.00$

Section 1.3.0-Multiplication
 MULTIPLICATION

- Align the digits.
- Start at the right. Multiply all top digits, one at a time, by the lower number.
- When the result of each multiplication equals or exceeds 10 , carry over the left digit and add it to the next product.
- If either number in the problem is greater than 10 , some addition is required at the end to determine the final answer.

[^0]
Section 1.3.0 - Multiplication and Division

DIVISION

- Set up the problem correctly.
- Begin dividing into the number(s) on the left end of the dividend.
- Record the resulting multiplier at the top and record the result of the multiplication under the dividend, properly aligned.
- Continue the process until the problem is complete. The remainder represents a fraction (part of a whole), in this case 22/24ths.

$010 ?$	0109 r22
$2 4 \longdiv { 2 , 6 3 8 }$	$2 4 \longdiv { 2 , 6 3 8 }$
-244	
023	-24
-000	-030
00238	-0238
	-0216
	22

Sections 1.3.1 and 1.3.2 - The Order of Operations

$$
6+3 \times 5=A
$$

MDAS

Multiplication
Division
Addition
Subtraction

Sections 1.3.1 and 1.3.2 - The Order of Operations

3. If one plumbing job requires 45 meters of PVC pipe, and a second job requires 30 meters, how many lengths of pipe will you need if it comes in 6-meter lengths? Remember that you cannot order a partial length of pipe; only orders for whole lengths are generally accepted.

13 lengths of pipe
How much pipe will be left over, assuming there are no erßurs?
\qquad meters

Sections 2.1.0 to 2.1.2 - Fractions

Although fractions such as $2 / 4$ and $1 / 2$ are equal, they must share a denominator for addition and subtraction.

Sections 2.1.0 to 2.1.2 - Fractions

REDUCING TO LOWEST TERMS

$$
\frac{4}{16} \div \frac{4}{4}=\frac{1}{4}
$$

Determine the largest number that will divide evenly into both the numerator and denominator. In this case, it is 4. Then divide both by this number.

Sections 2.1.3 and 2.1.4 - Fractions

Which is larger?

$$
\frac{3}{4} \text { or } \frac{5}{8}
$$

A common denominator is required for comparison. It does not need to be the lowest common denominator though; common denominators at any level allows for comparison.

$$
\begin{aligned}
\frac{3}{4} \times \frac{8}{8} & =\frac{24}{32} \\
\frac{5}{8} \times \frac{4}{4} & =\frac{20}{32}
\end{aligned}
$$

Sections 2.1.3 and 2.1.4 - Fractions

3. $3 / 4$ equals how many eighths?
a. 28
b. 48
c. 58
d. 68

Sections 2.1.3 and 2.1.4 - Fractions

Find the lowest common denominator for this pair of fractions.
14. $1 / 4$ and $3 / 16$.
a. 8
b. 16
c. 18
d. 20

Section 2.3.0 - Fractions

ADDING FRACTIONS

- Find a common denominator; it does not have to be the lowest, but the final answer will need to be converted to its lowest common denominator. Before or after is fine.
- Convert the fractions to the same denominator.
- Add the numerators only.

$$
\begin{aligned}
& \frac{3}{4} \times \frac{8}{8}=\frac{24}{32} \quad \frac{24}{32}+\frac{20}{32}=\frac{44}{32} \\
& \frac{5}{8} \times \frac{4}{4}=\frac{20}{32}
\end{aligned}
$$

- Reduce to the lowest common denominator, and then to a mixed number, if necessary.

Section 2.3.0 - Fractions

SUBTRACTING FRACTIONS

- Find a common denominator. Like addition, it does not need to be the lowest.
- Convert the fractions to the same denominator.
- Subtract the numerators only.

$$
\frac{7}{8}-\frac{2}{8}=\frac{5}{8}
$$

- Reduce to the lowest terms if necessary.

Section 2.3.1 - Fractions

Find the answers to the following addition problems. Remember to reduce the sum to the lowest terms and change any improper fractions to mixed numbers.

1. $1 / 8+4 / 16=\underline{3 / 8}$
2. $4 / 8+6 / 16=\underline{7 / 8}$

Section 2.3.1 - Fractions

Find the answers to the following subtraction problems. Remember to reduce the differences to the lowest terms.
6. $3 / 8-5 / 16=\underline{1 / 16}$
7. $11 / 16-58=\underline{1 / 16}$

Section 2.4.0 - Fractions

MULTIPLYING FRACTIONS

- No need to find a common denominator!
- Multiply the numerators, and then multiply the denominators.

$$
\frac{4}{8} \times \frac{5}{6}=\frac{20}{48}
$$

- Reduce the resulting fraction to its lowest terms.

Section 2.4.0 - Fractions

DIVIDING FRACTIONS

- Again, no need to find a common denominator.
- Identify the divisor and invert it. Then change the operation to multiplication.

$$
\frac{1}{2} \div \frac{3}{4}=\frac{1}{2} \times \frac{4}{3}
$$

- Now proceed with multiplication and reduce the result to its lowest terms.

$$
\begin{aligned}
& \frac{1}{2} \times \frac{4}{3}=\frac{4}{6} \\
& \frac{4}{6} \text { reduces to } \frac{2}{3}
\end{aligned}
$$

Section 2.4.1 - Fractions

Find the answers to the following multiplication problems without using a calculator. Reduce the products to their lowest terms and change improper fractions to mixed numbers.

1. $4 / 16 \times 5 / 8=\underline{5 / 32}$
2. $3 / 4 \times 7 / 8=\underline{21 / 32}$

Section 2.4.1 - Fractions

Find the answers to the following division problems without using a calculator. Reduce the quotients to their lowest terms and change improper fractions to mixed numbers.
6. $38 \div 3=\underline{1 / 8}$
7. $58 \div 12=1-1 / 4$

Next Session...

DECIMALS; TAKING MEASUREMENTS

Read Sections 2.0.0 through 4.2 .4 to prepare for the next session. Also complete the Section Review for Sections 1.0.0 through 4.0.0.

[^0]: 374
 36
 $\times 27$
 2,244 product of 6×374
 $+7,480$ product of 20×374
 9,724 final product

