CORE CURRICULUM

Session Three Objectives

When trainees have completed this session, they should be able to do the following:
5. Identify and convert units of length, weight, volume, and temperature between the imperial and metric systems of measurement.
a. Identify and convert units of length measurement between the imperial and metric systems.
b. Identify and convert units of weight measurement between the imperial and metric systems.
c. Identify and convert units of volume measurement between the imperial and metric systems.
d. Identify and convert units of temperature measurement between the imperial and metric systems.

Session Three Objectives

When trainees have completed this session, they should be able to do the following:
6. Identify basic angles and geometric shapes and explain how to calculate their area and volume.
a. Identify various types of angles.
b. Identify basic geometric shapes and their characteristics.
c. Demonstrate the ability to calculate the area of two-dimensional shapes.
d. Demonstrate the ability to calculate the volume of three-dimensional shapes.

Section 5.0.0 - Units of Measure

These metric units of measure are seen worldwide on packaging and in other common places on a daily basis.

Section 5.0.0 - Units of Measure

Although each prefix applies to every unit of measure, many units are virtually ignored for convenience. For example, the unit dekameter is rarely used, while centimeters and kilometers are extremely common. But a dekameter is a valid unit that can be used if desired.

Prefix	Unit			
micro- (μ)	$1 / 1,000,000$	0.000001	10^{-6}	
milli- (m)	$1 / 1,000$	0.001	10^{-3}	One-millionth
centi- (c)	$1 / 100$	0.01	10^{-2}	One-thousandth
deci- (d)	$1 / 10$	10.1	10^{-1}	One-hundredth
deka- (da)	10	100.0	10^{1}	One-tenth
hecto- (h)	100	$1,000.0$	10^{2}	Tens
kilo- (k)	1,000	$1,000,000.0$	10^{3}	Hundreds
mega- (M)	$1,000,000$	$1,000,000,000.0$	10^{6}	Thousands
giga- (G)	$1,000,000,000$		10^{9}	Millions

Sections 5.1.1 and 5.1.2 - Units of Measure

	IMPERIAL LENGTH UNITS	
1 inch	$=$	$1 / 2^{\text {th }}$ of a foot; 0.0833 feet
1 foot	$=$	12 inches; $1 / 3^{\text {rd }}$ of a yard
1 yard	$=$	36 inches; 3 feet
1 mile	$=$	5,280 feet; 1,760 yards

00102-15_T02.EPS

Sections 5.1.1 and 5.1.2 - Units of Measure

METRIC LENGTH UNITS	
1 kilometer	$=1,000$ meters
1 meter	$=100$ centimeters; 0.001 kilometers
1 centimeter	$=10$ millimeters; 0.01 meters
1 millimeter	$=0.1$ centimeters; 0.001 meters

00102-15_T03.EPS

Sections 5.1.3 and 5.1.4 - Units of Measure

Unit	Centimeter	Inch	Foot	Meter	Kilometer
1 millimeter	0.1	0.03937	0.003281	0.001	0.000001
1 centimeter	1	0.3937	0.3281	0.01	0.00001
1 inch	2.54	1	0.08333	0.0254	0.0000254
1 foot	30.48	12	1	0.3048	0.0003048
1 meter	100	39.37	3.281	1,000	0.001
1 kilometer	100,000	39,370	3,281	1	

Find the answers to the following conversion problems without using a calculator.

1. 0.45 meter $=45$ centimeters
2. 3 yards $=108$ inches
3. 36 feet $=12$ yards

Sections 5.2.1 and 5.2.2 - Units of Measure

Note that the ton in the imperial system is also known as the short ton. The long ton is rarely used, except in describing ship displacement, and is equal to 2,240 pounds.

	IMPERIAL WEIGHT UNITS	
1 ounce	$=$	$1 / 16^{\text {th }}$ of a pound; 0.0625 pounds
1 pound	$=$	16 ounces; 0.0005 tons
1 ton	$=$	2,000 pounds

00102-15_T05.EPS

	METRIC WEIGHT UNITS
1 metric ton	$=1,000$ kilograms
1 kilogram	$=1,000$ grams; 0.001 metric tons
1 gram	$=1,000$ milligrams; 0.001 kilograms
1 milligram	$=0.001$ gram; 0.000001 kilograms

Sections 5.2.3 and 5.2.4 - Units of Measure

IMPERIAL AND METRIC WEIGHT CONVERSION							
Unit	Metric Ton	Ton	Kilogram	Pound	Ounce	Gram	Milligram
1 metric ton	1	1.102	1,000	$2,204.62$	35,274	$1,000,000$	$1,000,000,000$
1 ton	0.9072	1	907.185	2,000	32,000	907,185	$907,200,000$
1 kilogram	0.001	0.0011	1	2.205	35.27	1,000	$1,000,000$
1 pound	0.000454	0.0005	0.4536	1	16	453.6	453,592
1 ounce	0.00002835	0.00003125	0.02835	0.0625	1	28.35	$28,349.5$
1 gram	0.000001	0.000001102	0.001	0.002205	0.03527	1	1,000
1 milligram	0.000000001	0.000000001102	0.000001	0.000002205	0.00003527	0.001	1

Convert these weights from imperial to metric weight units, or vice versa.

1. 50 pounds $=\underline{\mathbf{2 2 . 6 8}}$ kilograms
2. 50 kilograms $=\underline{110.23}$ pounds
3. $\mathbf{1 5 . 9}$ ounces $=\underline{\mathbf{4 5 0 . 7 6}}$ grams

Sections 5.3.1 and 5.3.2 - Units of Measure

Note that these volume units are not related to liquid measures such as the gallon and the liter.

IMPERIAL VOLUME UNITS		
1 cubic inch = 0.0005787 cubic feet		
$\begin{aligned} 1 \text { cubic foot } & =1,728 \text { cubic inches; } 0.037 \text { cubic yards } \\ 1 \text { cubic yard } & =27 \text { cubic feet } \end{aligned}$		
00102-15_T08.EPS		
METRIC VOLUME UNITS		
1 cubic centimeter $=0.000001$ cubic meters 1 cubic meter $=1,000,000$ cubic centimeters		

Sections 5.3.3 and 5.3.4 - Units of Measure

IMPERIAL AND METRIC VOLUME CONVERSION						
Unit	Cubic Meter	Cubic Yard	Cubic Foot	Cubic Inch	Cubic Centimeter	
1 cubic meter	1	1.308	35.315	$61,023.7$	$1,000,000$	
1 cubic yard	0.765	1	27	46,656	$764,554.86$	
1 cubic foot	0.0283	0.037	1	1,728	$28,316.85$	
1 cubic inch	0.000016387	0.000021433	0.0005787	1	16.387	
1 cubic centimeter	0.000001	0.000001308	0.00003531	0.0610	1	

Convert these volumes from the imperial system to the metric system, or vice versa.

1. 11,600 cubic inches $=6.7$ cubic feet
2. $\mathbf{1 . 9}$ cubic meters $\mathbf{= 1 , 9 0 0 , 0 0 0}$ cubic centimeters
3. 512 cubic meters $=\underline{\mathbf{6 6 9 . 7}}$ cubic yards

Section 5.4.0 - Units of Measure

Section 5.4.0 - Units of Measure

$$
\begin{gathered}
\text { Degrees } C=5 / 9(\text { degrees } F-32) \\
\text { Degrees } F=(9 / 5 \times \text { degrees } C)+32
\end{gathered}
$$

Convert these temperatures from Fahrenheit to Celsius, or vice versa.

1. 180 degrees $F=\underline{82.2} C$
2. 66 degrees $F=\underline{18.9} C$
3. -26 degrees $C=-14.8 F$

Sections 6.1.0 and 6.2.0 - Geometry

A right angle is neither obtuse nor acute. Adjacent and opposite angles are two or more angles together.

Sections 6.1.0 and 6.2.0 - Geometry

Note that the combined angles of the triangle are equal to 180 degrees, not 360 degrees.

RECTANGLE

TRIANGLE
$\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$

SQUARE

Sections 6.2.1 and 6.2.2 - Fractions

Diagonals create two equal right triangles in each of these shapes. However, with a square, each of the other two angles in each triangle will be exactly 45 degrees. With a rectangle, those angles depend on the rectangle length, but they will not be 45 degrees unless it is a square!

Sections 6.2.3 and 6.2.4 - Geometry

Understanding triangles is extremely important for pipefitters and workers in numerous other crafts.

ISOSCELES TRIANGLE
$48^{\circ}+66^{\circ}+66^{\circ}=180^{\circ}$

SCALENE TRIANGLE

Sections 6.2.3 and 6.2.4 - Geometry

CIRCUMFERENCE

These circle characteristics are required in many circlerelated calculations.

00102-15_F29.EPS

Section 6.3.0 - Geometry

COMMON AREA UNITS

1 square inch $=1$ inch $\times 1$ inch $=1$ inch 2 1 square foot $=1$ foot $\times 1$ foot $=1$ foot ${ }^{2}$
1 square yard $=1$ yard $\times 1$ yard $=1$ yard ${ }^{2}$
1 square centimeter $=1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{2}$
1 square meter $=1 \mathrm{~m} \times 1 \mathrm{~m}=1 \mathrm{~m}^{2}$

Section 6.3.0 - Geometry

COMMON AREA FORMULAS

- The area of a rectangle $=$ length \times width.
- The area of a square also $=$ length \times width.
- The area of a circle $=\pi \times$ radius 2. In this formula, you must use the mathematical constant π (pi), which has an approximate value of 3.14. You multiply π times the radius of the circle squared (multiplied times itself).
- The area of a triangle $=1 / 2 \times$ base \times height.

Section 6.3.1 - Geometry

1. The area of a rectangle that is 8 feet long and 4 feet wide is \qquad .
a. 12 sq ft
b. 22 sq ft
c. 32 sq ft
d. $\quad 36 \mathrm{sq} \mathrm{ft}$
2. The area of a 16 cm square is \qquad .
a. 256 sq cm
b. 265 sq cm
c. 276 sq cm
d. 278 sq cm

Section 6.3.1 - Geometry

3. The area of a circle with a 14 -foot diameter is \qquad .
a. 15.44 sq ft
b. 43.96 sq ft
c. 153.86 sq ft
d. 196 sq ft

Sections 6.4.0 and 6.4.1 - Geometry

COMMON VOLUME FORMULAS

1 cubic inch $=1$ inch $\times 1$ inch $\times 1$ inch $=1$ inch 3
1 cubic foot $=1$ foot $\times 1$ foot $\times 1$ foot $=1$ foot 3
1 cubic yard $=1$ yard $\times 1$ yard $\times 1$ yard $=1$ yard 3
1 cubic centimeter $=1$ centimeter $\times 1$ centimeter $\times 1$ centimeter $=1 \mathrm{~cm}^{3}$
1 cubic meter $=1$ meter $\times 1$ meter $\times 1$ meter $=1 \mathrm{~m}^{3}$

Sections 6.4.0 and 6.4.1 - Geometry

VOLUME OF A SLAB

Step 1 Convert inches to feet.

$$
4 \text { in } \div 12=0.33 \mathrm{ft}
$$

Step 2 Multiply length \times width \times depth.

$$
20 \mathrm{ft} \times 8 \mathrm{ft} \times 0.33 \mathrm{ft}=52.8 \mathrm{cu} \mathrm{ft}
$$

Step 3 Convert cubic feet to cubic yards.

$$
52.8 \text { cu ft } \div 27(\text { cu ft per cu yd) }=1.96 \text { cu yd of concrete }
$$

Sections 6.4.3 and 6.4.4 - Geometry VOLUME OF A CYLINDER

$\pi \times$ radius $^{2} \times$ height (or $\pi r^{2} \times$ height)

Step 1 First, calculate the area of the circle using πr^{2}. Since the diameter is 22 feet, the radius will be 11 feet (half the diameter).

Area of the circle $=3.14 \times 11^{2}=379.94 \mathrm{sq} \mathrm{ft}$
Step 2 Then calculate the volume (area \times height).

$$
379.94 \mathrm{sq} \mathrm{ft} \times 10 \mathrm{ft}=3,799.4 \mathrm{cu} \mathrm{ft}
$$

Sections 6.4.3 and 6.4.4 - Geometry VOLUME OF A TRIANGULAR PRISM

$0.5 \times$ base \times height \times depth (thickness)
Step 1 Calculate the area of the flat triangle first:

$$
0.5 \times 6 \times 12=36 \mathrm{sq} \mathrm{~cm} \text { area }
$$

Step 2 Then calculate the volume of the prism, by adding the factor of depth:

$$
36 \mathrm{sq} \mathrm{~cm} \times 11 \mathrm{~cm}=396 \mathrm{cu} \mathrm{~cm}
$$

Sections 6.4.5 and 6.4.6 - Geometry

2. The volume of a 3 cm cube is \qquad .
a. 6 cu cm
b. 9 cu cm
c. 12 cu cm
d. 27 cu cm
3. The volume of a triangular prism that has a 6 -inch base, a 2 -inch height, and a 4-inch depth is \qquad .
a. 12 sq in
b. 24 cu in
c. 36 cu in
d. 48 sq in

Sections 6.4.5 and 6.4.6 - Geometry

00102-15_F35.EPS
2. To pour the concrete sidewalk shown in the figure, approximately how many cubic feet of topsoil will you need to remove for the 4" thick sidewalk if the owner wants the finish surface of the sidewalk to be level with the adjacent topsoil? Round your answer to the nearest cubic foot.
109 cu ft

Next Session...

MODULE EXAM

Review the complete module to prepare for the exam. Complete the Module Review and Trade Terms Quiz as homework.

